Three-dimensional Atom Probe Studies of Thin Film Oxide Heterostructures

A K Petford-Long^a, C K Sudbrack^a, D Schreiber^{a,b}, D N Seidman^b and D J Larson^c

^a Materials Science Division, Argonne National Laboratory

^b Materials Science Department, Northwestern University

^c Imago Scientific Instruments

(1) Motivation

The nature of the interfaces controls the properties of thin film oxide heterostructures. However these can be difficult to visualize post-deposition, making correlation with properties difficult.

We are using three-dimensional atom probe analysis to address this issue. The atom probe provides three-dimensional atomic-scale information about local chemistry and morphology.

- · Single atoms removed and identified
- · High magnification gives 3-D atomic-scale map

(2) Major Accomplishments

Atom probe analysis of the alumina tunnel barrier in simple magnetic tunnel junctions (MTJs) [Ref 1]:

For as-deposited barriers, pinholes between the ferromagnetic layers exist, but the MTJs still display electron tunnelling and a tunnel magnetoresistance.

This work was performed in collaboration with University of Oxford and Seagate Technologies.

(3) Impact

The atomic-scale resolution of the atom probe data, and the volume of material analyzed $(100 \times 100 \times 100 \text{ nm}^3)$ provides a means to:

- Correlate physical properties such as tunneling with interfacial mixing and roughness
- Generate realistic models of materials properties such as tunneling characteristics

(4) Future Directions

We will focus on novel systems for which an understanding of local interface chemistry and morphology at the atomic-scale is critical:

- High TMR tunnel junctions with MgO barriers
- All-oxide tunnel junctions with half-metallic ferromagnets for high spin-polarization
- Spin-injection structures
- · Ferroelectric capacitors and nanostructures
- · Gate oxide structures

These are non-trivial systems for atom probe analysis and further goals of our research are:

- Optimization of specimen fabrication from films deposited on arrays of microtips
- Refining methods of interface analysis for quantification of roughness and interdiffusion
- Use of laser pulsed atom probe for analysis of all-oxide structures

SEM Image of Microtip Array

Image courtesy of Imago Scientific Instruments

These investigations will make use of the LEAP instrument at Northwestern University.

[1] A K Petford-Long, Y Q Ma, A Cerezo, D J Larson, E W Singleton and B W Karr, J. Appl. Phys. 98, 124904 (2005)

